

Voltage Transducer LV 200-AW/2/SP7

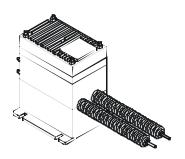
For the electronic measurement of voltages: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

Electrical data

I _{PN}	Primary nominal r.m.s. current		20 0 ± 40		m A
I _P	Primary current, measuring range				m A
$R_{_{\mathrm{M}}}$	Measuring resistance		$R_{_{ m Mmin}}$	$\mathbf{R}_{M\;max}$	
		$@ \pm 20 \text{mA}_{\text{max}}$	0	93	Ω
		$@ \pm 40 \mathrm{mA}_{\mathrm{max}}$	0	31	Ω
I_{SN}	Secondary nominal r.m.s. current		100		m A
K _N	Conversion ratio		10000	: 2000	
V _c	Supply voltage (± 10 %)		± 17	28	V
I _c	Current consumption		90(@±2	28V)+ I s	m A
V _d	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		28 1)		k۷
_			2 2)		k۷

Accuracy - Dynamic performance data

X _G	Overall Accuracy @ I_{PN} , $T_A = 25$ °C Linearity		± 0.5 < 0.1	% %
I _O	Offset current @ $\mathbf{I}_{\mathrm{p}} = 0$, $\mathbf{T}_{\mathrm{A}} = 25^{\circ}\mathrm{C}$ Thermal drift of \mathbf{I}_{O}	- 25°C + 70°C	Typ Max	m A m A
$\mathbf{t}_{_{\mathrm{r}}}$	Response time $^{3)}$ @ 90 % of $\mathbf{V}_{_{\mathrm{PN}}}$		20 100	μs


General data

Ambient operating temperature	- 25 + 70	°C
Ambient storage temperature	- 40 + 85	°C
Primary coil resistance @ T _A = 25°C	550	Ω
Secondary coil resistance @ T _A = 70°C	40	Ω
Mass	3	kg
Standards 4)	EN 50178 (01.10.97)	
	Ambient storage temperature Primary coil resistance @ $T_A = 25^{\circ}$ C Secondary coil resistance @ $T_A = 70^{\circ}$ C Mass	Ambient storage temperature $-40+85$ Primary coil resistance @ $\mathbf{T}_{A} = 25^{\circ}\mathrm{C}$ 550 Secondary coil resistance @ $\mathbf{T}_{A} = 70^{\circ}\mathrm{C}$ 40 Mass 3

Notes: 1) Between primary and secondary + shield

- 2) Between secondary and shield
- $^{3)}$ R₁ = 50 k Ω (L/R constant, produced by the resistance and inductance of the primary circuit)
- ⁴⁾ A list of corresponding tests is available.

$I_{PN} = 20 \text{ mA}$

Features

- Closed loop (compensated) voltage transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0
- · Accessible electronic circuit
- Shield between primary and secondary circuit.

Principle of use

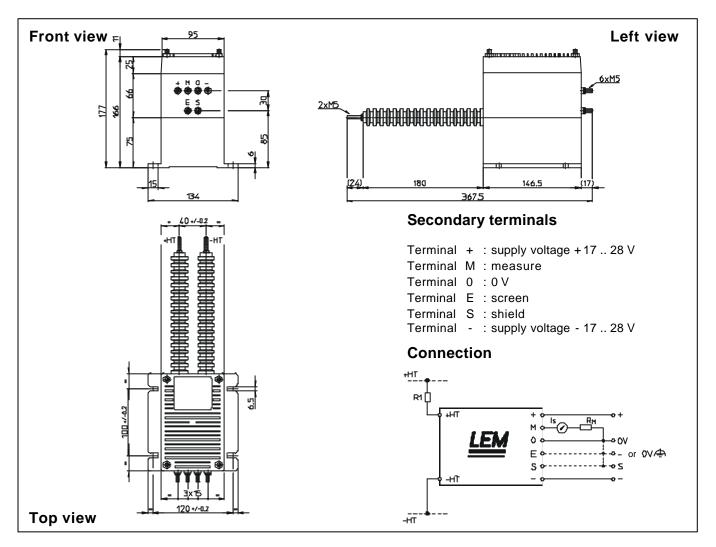
 For voltage measurements, a current proportional to the measured voltage must be passed through an external resistor R₁ which is selected by the user and installed in series with the primary circuit of the transducer.

Special Features

- $I_0 = 0.. \pm 40 \text{ mA}$
- $\mathbf{V}_{d} = 28 \,\mathrm{k} \,\mathrm{V}^{1}$.

Advantages

- Excellent accuracy
- Very good linearity
- · Low thermal drift
- High immunity to external interference


Applications

- AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications.

030819/3

Dimensions LV 200-AW/2/SP7 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance ± 0.5 mm

Transducer fastening
 4 slots Ø 6.5 mm
 4 M6 steel geroup

4 M6 steel screws

 $Recommended \ fastening \ torque \qquad 4.5 \ Nm \ or \ 3.32 \ Lb \ - \ Ft.$

Connection of primary
 Connection of secondary
 M5 threaded studs
 M5 threaded studs

• Recommended fastening torque 2.2 Nm or 1.62 Lb - Ft.

Remarks

- I_s is positive when V_p is applied on terminal +HT.
- The shield (terminal E) and the screen (terminal S) must be connected to 0 V or terminal -.

Instructions for use of the voltage transducer model LV 200-AW/2/SP7

Primary resistor \mathbf{R}_1 : the transducer's optimum accuracy is obtained at the nominal primary current. As far as possible, \mathbf{R}_1 should be calculated so that the nominal voltage to be measured corresponds to a primary current of 20 mA.

Example: Voltage to be measured $\mathbf{V}_{PN} = 1000 \text{ V}$ a) $\mathbf{R}_{_1} = 50 \text{ k}\Omega/40 \text{ W}, \mathbf{I}_{_P} = 20 \text{ mA}$ Accuracy = $\pm 0.5 \%$ of \mathbf{V}_{PN} (@ $\mathbf{T}_{_A} = +25^{\circ}\text{C}$) b) $\mathbf{R}_{_1} = 200 \text{ k}\Omega/10 \text{ W}, \mathbf{I}_{_P} = 5 \text{ mA}$ Accuracy = $\pm 2.0 \%$ of \mathbf{V}_{PN} (@ $\mathbf{T}_{_A} = +25^{\circ}\text{C}$)

Operating range (recommended): taking into account the resistance of the primary windings (which must remain low compared to **R**₁ in order to keep thermal deviation as low as possible) and the isolation, this transducer is suitable for measuring nominal voltages from 100 to 2500 V.